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Propagation of Forced Sound Waves in Rarefied Gasdynamics 
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A kinetic theory description of sound propagation in a simple gas is presented. The results are in very close 
agreement with experiment through all values of Knudsen number. 
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equilibrium density and temperature 
particle velocity 
particle speed 
mass-distribution function of particles 
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particle mass 
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f0= po/(2rrRTo)le (-•21•'•ø), Maxwellian equilibrium- 
distribution function 

g= (f_ fo)/fo perturbed distribution function 
U= I [-- [* I relative speed (asterisk subscript de- 

notes a different value of the velocity; 
•. is sometimes referred to as the struck 
particle) 

0, e angle variables that orient a collision 
between two particles 

B(O,U) differential cross section that is also a 
function of the intermolecular force law 

INTRODUCTION 

THan E description of sound propagation arising from oscillating piston (forced sound waves) under 
normal conditions, in a simple gas, is adequately de- 

* Present address: Applied Mathematics Department, Brook- 
haven National Laboratory, Upton, New York. 

• See, for instance, L. Landau and E. Lifshitz, Fluid Mechanics 
(Addison-Wesley Publishing Co., Inc., Reading, Mass., 1959). 

scribed by the classical theory of Stokes and Kirchoff. • 
This theory is, of course, based on the Navier-Stokes 
equations. However, for high-frequency sound propa- 
gation in a low-pressure gas, we can expect the situation 
to change markedly. The relevant parameter is the 
Knudsen number (Kn), i.e., the ratio of gas mean free 
path to sound wavelength (alternately, the ratio of 
sound frequency to gas collision frequency). To obtain 
a theory for larger values of Kn one has no recourse but 
to turn to the Boltzmann equation of kinetic theory. 
Attempts at the sound problem, based on kinetic theory, 
have been made by Wang Chang •' (Burnett equations) 
and by Wang Chang and Uhlenbeck a (super-Burnett 
equations). However, comparison of these theories with 
experiment 4.5 shows that these are at best slight exten- 
sions of the Navier-Stokes results. Pekeris and his co- 
workers 6.7 using numerical procedures have extended 

2 C. S. Wang Chang, "On the Dispersion of Sound in Helium," 
Johns Hopkins Univ. Appl. Phys. Lab. Rept. CM-467, UMH-3-F 
(1948). 

a C. S. Wang Chang and G. E. Uhlenbeck, "On the Propagation 
of Sound in Monatomic Gases," Univ. Mich. Eng. Res. Inst. 
ONR Contr. N60nr-23222 (1952). 

4 M. Greenspan, J. Acoust. Soc. 28, 644-648 (1956). 
• E. Meyer and G. Sessler, Z. Physik. 149, 15-39 (1957). 
• C. L. Pekeris, Z. Alterman, and L. Finkelstein, in Symposium 

on the Numerical Treatment of Ordinary Differential Equations, 
Integral, and Intro-Di•erential Equation of P.I.C.C. (Birkhauser- 
Verlag, Basel, 1960), pp. 388-398. 

7 C. L. Pekeris, Z. Alterman, L. Finkelstein, and K. Frankowski, 
Phys. Fluids 5, 1608-1616 (1962). 
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330 SIROVICH AND THURBER 

this method beyond normal belief. Nevertheless, for Kn 
of 0(1) and larger, the results are quite poor. (For a 
possible explanation of this, see Sec. IV, comment 4, in 
the closing section of this paper.) 

In this paper, a new kinetic-theory approach, based 
on kinetic models, 8-•ø is taken. Agreement between the 
above cited experiments and the present theory is ex- 
tremely good. An analytical account of this theory, 
mainly based on the (BGK) (Ref. 8) model, has already 
been discussed. n.12 In the present paper, much more 
elaborate models are considered and the results of a 

numerical investigation are also presented. In a com- 
panion paper la (henceforth referred to as I), the nature 
of sound waves arising from an initial disturbance (free 
sound waves) is studied. Since many features and formu- 
las are closely related in the two investigations, frequent 
reference is made to I. 

I. GOVERNING EQUATIONS 

A'general theory of models of the Boltzmann equation 
was first presented by Gross and JacksonY Some ex- 
tensions and modifications were given by Sirovich •ø and 
a description of this technique suited to the present 
problem is to be found in I. In order to present a 
coherent account of our work, a brief development of 
kinetic models is now given. 

The one-dimensional linearized Boltzmann equation 
is 14 

g=.e(g)=- (1) 
m 

with [g]=g,'+g'-g,--g. This equation is made di- 
mensionless with respect to an as yet unspecified fre- 
quency v= i/r, as follows' 

t'= •t, x'= x•/ (Rro)•, •'= •/ (RTo)«, B'= po•B/m. (2) 

On substituting these into (1) and then removing the 
repetitious primes, we obtain 

q- •, g= L (g) = oo,[g]BdOd•d•,, (3) 

8 p. F. Bhatnager, E. P. Gross, and M. Krook, Phys. Rev. 94, 
511-525 (1954). 

9 E. P. Gross and E. A. Jackson, Phys. Fluids 2, 432-441 (1959). 
•0 L. Sirovich, Phys. Fluids 5, 908-918 (1962). 
n L. Sirovich and J. K. Thurber, "Sound Propagation according 

to Kinetic Models," New York Univ. Inst. Math. Soc. Rept. 
AFOSR-1380, MF-17, 1961. 

•' L. Sirovich and J. K. Thurber, in Rarefied Gas Dynamics, 
J. A. Laurmann, Ed. (Academic Press Inc. New York, 1963), pp. 
159-180. 

•aL. Sirovich and J. K. Thurber, in Rarefied Gas Dynamics 
(Academic Press Inc., New York and London to be published). 
Henceforth referred to as I. 

•4 See, for instance, S. Chapman and T. G. Cowling, The 
Mathematical Theory of Non-Uniform Gases (Cambridge Uni- 
versity Press, London, 1952). 

with 

w= e-•'/•/ (2•r)t. 

Employing the following inner product 

(4) 

(P,q) = (s) 

one easily has that for 

F • /f•\ • /f•\ [2 ,rr ! (2/q- 1) (6) 
6kr •,•kr, •,) = •,• •,. (7) 

$•q and Pc are the Laguerre and Legendre polynomials, 
respectivelyJ • For the case B= B(O), satisfied by the 
Maxwell intermolecular-force law (inverse fifth power), 
Wang Chang and Uhlenbeck a showed that the •k• are 
eigenfunctions of L. It is convenient to reduce the 
double subscript to a single subscript; i.e., we write 

r=r(i), l=l(i), •k•,=•k,, (8) 

and for the moment leave the precise nature of the 
transformation, Eq. (8), unspecified. 

Expanding g in terms of the •k•, 

g= •. a,,•,,, (9) 

and substituting into (3), we have 

s =œ(g)= E (lO) 

where 

and 

Xnm= (•n,L (•m) ). 

For Maxwell molecules, 

X•,= 0, m•n. 

To obtain kinetic models, we write 

(11) 

(12) 

(13) 

L•L 3r= •. a•X•k•+Xg+•.g+• •. 
m, n< N 

rn, n_• N 

and substitute into equation (10). The above derivation 
follows that found in Ref. 10. The method of derivation 

x• See, for instance, W. Magnus and F. Oberheltinger, Formulas 
and Theorems for Functions of Mathematical Physics (Chelsea 
Publishing Co., New York, 1954). 
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PROPAGATION OF SOUND IN RAREFIED GASES 331 

is essentially due to Gross and Jackson, ø who gave it for 
Maxwell molecules. For N-3, the model equation 
becomes the linearized form of the Krook, or single- 
relaxation model. 8 

The kinetic-model equation is further simplified by 
choosing v of Eq. (2) such that XN+I.N+I (Ref. 16) be- 
comes -1. The Nth-order kinetic model then becomes 

q-•--q- 1 g= E an•nm•bm, (15) 
0X m, n_< N 

where 

(16) 

H. FORMULATION OF THE PROBLEM 

An infinite volume of gas is restricted to the right 
half-plane. The plane at x=0 is oscillating with a fre- 
quency o•. In the linearization, suitable boundary con- 
ditions are applied at x=0. Also, from linearity, the 
time variation can be taken proportional to 

e i•t. (17) 

The general form of the model equations in this case is 

( ) iw+•i---4-1 g= • t•n[•nm•m. (18) 
OX n, m_< N 

The assumption of (17) avoids the transient due to 
initial conditions, so that (18), with proper boundary 
conditions, governs the so-called steady-state problem. 
The boundary condition at x=0 is, in general, of a 
statistical nature. One writes 

f(,•, x=0)=f K(•,•')f(•', x=0)d/•', •>0. (19) •'< 0 

That is, the outgoing distribution function is given in 
terms of the incoming distribution function. Only a 
knowledge of the kernel function K (•,•') is presumed. 
In practice, kernal functions giving only diffuse and 
specular reflections (and their combination) are chosen. 
For the problem considered in this paper, no particular 
boundary conditions need be considered. We merely 
denote formally by g(x-0)= go the boundary condition 
at x=0. 

Since the gas is in the right half-plane, it is natural to 
use the Laplace transform. Denoting the Laplace- 
transform variable by s and using the same symbol for 
the transformed quantities, (18) becomes 

(•q-S•lq-1)g= • an•nm•bmq-•lgo. (20) 
m,n_<N 

All X,•,• can be shown to be nonpositive; see Ref. 14. 

Under obvious manipulations, this becomes 

( ) ttlc= • ttn[•nm 
•. ,•< 2v i•o+ s•+ 1 

•g0 ) + •, . (21) 
/w+s•+l 

Letting k= 1, --., N, we obtain an NXN system of 
linear equations in the an. In matrix notation, 

(1- c)a= Ma= a ø, (22) 
where 

•g0 •k O• 1/dk, , 
ico+s•+ 1 

(23) 

•_< • i•o+s•+ 1 

To obtain the solution to the problem, one first inverts 
the matrix equation (22) and then inverts the Laplace 
transform. With the exception of an asymptotic analy- 
sis, such a plan does not seem feasible at present. 

As is well-known, values of s for which M is degener- 
ate are possible plane-wave solutions. In general, a great 
many of such models of propagation are possible?. •* In 
this paper, we consider only sound propagation. We 
therefore wish to compute the zeroes of the dispersion 
relation, 

det(M)-0, (24) 

which correspond to sound waves. To do this, it is 
necessary to know (•k•, ['•bm/(•+s•+l)•). A large 
block of these are given in Ref. 12, and the closed-form 
representation of these for arbitrary k and m is given in 
I. These involve the Gaussian and error function of the 

complex variable (G+ 1)Is. Aside from an asymptotic 
analysis, any hand computation involving the dispersion 
relation soon becomes unfeasible. The dispersion rela- 
tion was therefore programmed for machine solution. 
The results of these calculations are described in 
Sec III. 

In order to complete the specification of the problem, 
it is necessary to give the constants Xmn. These, of 
course, depend on the gas. More specifically, they de- 
pend on the nature of the intermolecular force between 
gas particles. Two different gas laws are considered: 
rigid spheres and Maxwell molecules. These represent 
the limits of hard and soft potentials for a neutral gas. 
The constants X•t have been computed• and Tables of 
these are given in I, for the two gases considered. 

Finally, for reasons discussed elsewhere, •* the order- 
' ','5 1 

ß 

•* An infinite number of modes of propagation are shown to 
exist for the exact Boltzmann equation in L. Sirovich, Phys. 
Fluids 6, 10-20 (1963). 
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332 SIROVICH AND THURBER 

MAXWELL POTENTIAL GAS: FORCED SOUNDWAVE SPEEDS 

CONVERGENCE OF MODELS 
_-I. 

•"'"'• - II MOMENTS MODEL 
• ,, N 

,I- 

I I I I 

IO t I0 i( n I I0 -j 
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i0-• 

.002 .005 .01 .02 .05 .,I r: p/• I 2 5 I0 
• I I I 

2O 
I 

Fro. 1. Maxwell-potential gas' forced sound-wave speeds; convergence of models. 

5O 
• I 

MAXWELL POTENTIAL GAS: FORCED SOUNDWAVE ATTENUATION RATES 
.5 

- .05 II MOMENTS MODEL 
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CONVERGENCE OF MODELS 
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Fro. 2. Maxwell-potential gas' forced sound-wave attenuation rates; convergence of models. 
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PROPAGATION OF SOUND IN RAREFIED GASES 333 

ing, Eq. (8), is taken to correspond to increasing 
(see I for another possibility). 

III. DISCUSSION OF THE RESULTS 

In presenting the numerical data, we adhere to the 
description used by Greenspan. 4 Specifically, we repre- 
sent the (x,t) dependence of a sound wave by 

•e •"-• (25) 

(corresponding to the Laplace transform of the last 
section), where O and s are now taken to be the di- 
mensional forms of w and s. Next writing 

•=a+i•, (26) 

we take for the normalized attenuation rate 

a/•o= aao/ •= aXo/ 2•r. (27) 

Based on the adiabatic sound speed a0,/go is an equiva- 
lent wavenumber and X0 the corresponding equivalent 
wavelength. The speed of propagation is 

a=5/g, (28) 

and we plot the normalized reciprocal speed 

ao/a. (29) 

Both the speed ratio, Eq. (29), and the attenuation 
rate, Eq. (27), are functions of a single parameter, 
which, following Greenspan, 4 we write as 

r=p/&u, (30) 

where p is the pressure and u the absolute viscosity. To 
make clear the equivalence of r with the parametrization 
used earlier, we point out that for Maxwell molecules •4 

P/u = - (•02,œ (•0•.)) (31) 

and for rigid spheres •4 

p/u= - (1/1.016) (•0•,œ (•0•.)). (32) 

œ and •0• are defined by Eqs. (1) and (6), respectively. 
The coefficient 1.016 in Eq. (32) arises from the fourth 
approximation to the viscosity in the sense of Chapman 
and Cowling. •4 

In addition to r, it is convenient for some purposes to 
also exhibit the associated Knudsen number, 

MEAN FREE PATH 

Kn= . (33) 
EQUIVALENT WAVELENGTH 

Basing the mean free path on the rigid-sphere defini- 
tion, •4 one easily obtains 

Kn= 8/r5,r (2•r•)•, (34) 

where • is ratio of specific heats equal to 5/'3 in this case. 
As already mentioned, the polynomials, •k• in (9), are 

ordered according to increasing values of IXii[. The 
degeneracy of the eigenvalues of Maxwell molecules •7 

then dictates that we take numbers N=3, 5, 8, 11. 
These values of N were taken for both the Maxwell 

molecule and the rigid spheres. The value N= 1 ! allowed 
the correct determination of u (Ref. 18) for rigid spheres 
to within the fourth approximation of viscosity in the 
sense of Chapman and Cowling. TM 

Figure ! contains the results for the speed of sound of 
the four kinetic models in the case of Maxwell molecules. 

In the continuum region (Kn <0.05), all models except 
N-3 are in excellent agreement. In transition and 
Knudsen regions TM ['Kn=0(1), Kn> 1-], the curves have 
spread but there is good agreement between curves. An 
asymptotic analysis shows that at very high frequency 

a/ao= O (['lnoo]l). (35) 

In Fig. 2, the corresponding attenuation rates are 
plotted. Again, with the exception of the N= 3 model, 
all curves fall on each other in the continuum range and 
show relatively little spread in the transition and 
Knudsen regions. Each of the attenuation-rate curves 
has a maximum point. For N= 8, this occurs relatively 
sharply at r•,0.5 while the others exhibit very shallow 
maxima at r•,0.08. An asymptotic analysis shows that 
for all models 

a/•o= O ([lnw• -I) (36) 

for very large frequencies. (Therefore, a maximum 
always exists.) 

The failure of the N= 3 or Krook model to agree with 
the others has a simple explanation. This model, as 
Eq. (14) shows, 2ø has only a single constant. From the 
manner in which the model equations have been de- 
veloped, one finds that the Krook model furnishes the 
heat conduction correctly but the viscosity incorrectly. 
Specifically, this model leads to a Prandtl number 
Pr-!. On the other hand, all other models yield the 
correct value of Pr--• for Maxwell molecules. 

The comparable data for the rigid-sphere gas are 
plotted in Figs. 3 and 4, and the same remarks apply. 
Figures 5 and 6 compare speed ratios and attenuation 
rates, respectively, for the Maxwell molecule and rigid- 
sphere gas when N-8 and N= 11. These two Figures 
are self-explanatory and, aside from one point, we will 
not comment on them. On regarding Fig. 6, it is noticed 
that in the continuum region the rigid sphere and 
Maxwell-molecule attenuation-rate curves are slightly 
displaced from one another. Actually, this has been 
accentuated in the diagram. This divergence arises from 
the fact that rigid spheres and Maxwell molecules have 
slightly different Prandtl numbers. As already pointed 

•SFor Maxwell molecules, an exact determination of t• is 
obtained from the eigenvalues. 

•9 In using these appellations for the Kn ranges, we are following 
the customary practice in kinetic theory. But the usual connota- 
tions are lost. For instance, Kn>>l does not signify a collisionless 
gas. 

•0 One easily can show that M,•, X2,•, Xa,• all vanish; see Ref. 14. 
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334 SIROVICH AND THURBER 

RIGID SPHERE GAS: FORCE SOUNDWAVE SPEEDS 

CONVERGENCE OF MODELS 

.2- 

I ! I ! I 

to a IO Kn I I0" I0" 

.002 .005 .0• .02 .05 .• r = p/G/.t. ! 2 5 I0 
! • • I I I I • • I I I I I I i 

FZG. 3. Rigid-sphere gas' force sound-wave speeds; convergence of models. 

2O 50 

$ RIGID SPHERE GAS: FORCED SOUNDWAVE ATTENUATION RATES / -' , ._ • CONVERGENCE OF ODELS ' -] 

- 02 '•' 

-- .I 

_.o, I 
-- a• / J•ø '- Cl •'ø '•' l'r •ll MOMF'NTS MOD"[L '•' 1 
- .oz s ' ' X\ .oz-I 

3 

- .01 

I0' I0 Kn I I0 '• I•" 

.002 .005 .01 .02 .05 .I r = p/•p. I 2 .5 I0 20 .50 
I I I I I I I I i I I I I I I I i I I I I t I I 

Fro. 4. Rigid-sphere gas: forced sound-wave attenuation rates; convergence of modelsß , 
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FORCED SOUNDWAVE SPEEDS 

COMPARISON OF RIGID SPHERE & MAXWELL POTENTIAL MODELS 

-I. 

MAX. POT. II MOMENTS MODEL 
m m 8 m m m • 

RIGID SPHERE II MOMENTS MODEL 

m m 8 m m 
.I- 

i i i i 

io n io Ka I io -• 
I 

I0'" 

.002 .005 .01 .02 .05 . I r = p/G• • 2 5 
I I • • • • I I t I I ! I • • • • i t 

Fro. 5. Forced sound-wave speeds; comparison of rigid sphere and Maxwell-potential models. 
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FORCED SOUNDWAVE ATTENUATION RATES 
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FiG. 6. Forced sound-wave attenuation rates; comparison of rigid sphere and Maxwell-potential models. 
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MAXWELL POTENTIAL GAS: FORCED SOUNDWAVE SPEEDS 

COMPARISON WITH EXPERIMENTS 

- I. - ; • •,, ; • ß I. - 

- '$ a .5 

_- 
ET AL, 483 MOMENTS 2 
TOKES ' 
ENTAL VALUES OF GREENSPAN 

- .I • • " " "MEYER • SESSLER 
I I I • • 

•• I0 Kn ! I0" •0-= 
.00Z .005 .01 .OZ .05 .! r = p/•p, I Z 5 !0 20 50 

• • I I I I I I I • I I ! I I I I I I I i I I I 

Fro. 7. Maxwell-potential gas' forced sound-wave speeds; comparison with experiments. 

MAXWELL POTENTIAL GAS: FORCED SOUNDWAVE ATTENUATION RATES 
COMPARISON WITH EXPERIMENTS 

-. I • • • . I 

- // -- II MOMENTS MODEL 2 • ,' -- 8 .ENTS MO?EL 
_ .0 // • NAVIER- STOKE S • .02 

// -- PEKERIS ET AL,483 •MENTS • 
/ a EXPERIMENTAL• LU•• MEY• & SESSLER • 

/ . 

o. ' '- ' ....... 

I ; I I • !0' I Kn I I0" I 0" 

.002 .005 .01 .02 .0:5 . I r = P/•p- I 2 5 I0 20 50 
! I I I I I I ! ! ! I I I I I I I I I I 

Fro. 8. Maxwell-potential gas' forced sound-wave attenuation rates; comparison with experiments. 
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RIGID SPHERE GAS.' FORCED SOUNDWAVE SPEEDS 

COMPARISON WITH EXPERIMENTS 

-I. 

_ 

II MOMENTS MODEL 

- .2 PEKERIS ET AL, lOS MOMENTS 
NAVIER-STOKES 

© EXPERIMENTAL VALUES OF OREENSPAN 

- ,I !! " " "MEYER & SESSLER .I - 

I••.• •' I0 Kn I 10 '0 I0" 
.002 .005 

I I I I 
ß 01 .02 .05 .I r = p/•p. I 2 $ I0 20 $0 

I I I ! I ! I I I I I I I I I I I ! I I 

Fro. 9. Rigid-sphere gas' forced sound-wave speeds; comparison with experiments. 

RIGID SPHERE GAS= FORCED SOUNDWAVE ATTENUATION RATES 
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! ! I • f I • • I, I I I '1 I I I t I i I I i I I 

Fro. 10. Rigid-sphere gas' forced sound-wave attenuation rates; comparison with experiments. 
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338 SIROVI CH AND THURBER 

out, Maxwell molecules have Pr-•, whereas for rigid 
spheres Pr-- 0.661. 

Finally, Figures 7-10 compare the above results with 
the experiments of Greenspan 4 and Meyer and Sessler. 5 
Also compared is the Navier-Stokes theory and the 
work of Pekeris and his coworkers. 6.7 ['The latter is 
based on the work of Wang Chang and Uhlenbeck • and 
is obtained by assuming a finite moment expansion for 
g in Eq. (9). When substituted into (10), this generates 
a system of equations in the chosen moments. This can 
also be regarded as a truncation of the full equation. 
Pekeris et al. numerically solve the derived dispersion 
relation. By contrast, the method presented here uses 
the full distribution function g, but with some slight 
manipulation, Eq. (14), a finite number of moments 
become distinguished. In referring to either method, it is 
convenient to refer to the number of moments that each 

method distinguishes. It is hoped that these remarks 
will prevent possible confusion.• The experimental 
values of Greenspan 4 encompass the five noble gases He, 
Ne, Ar, Kr, and Xe and the experimental values of 
Meyer and Sessler 5 are for Ar. As a rough gauge for 
comparison between the kinetic theory and the real 
gases, we note that the Prandtl numbers of the above 
five gases vary from 0.648 for xenon to 0.674 for neon. 
This in contrast to abovementioned values of -• for 
Maxwell molecules and 0.661 for rigid spheres. 

Regarding the speed-ratio plots, Figs. 7 and 9, it can 
be said that the 8- and 11-moment models are in good 
agreement with experiment for both Maxwell molecules 
and rigid spheres. The latter gas model, however, seems 
decidedly closer to experiment for larger values of 
Knudsen number. The superiority of rigid spheres in 
describing the speed ratio is also borne out by the curves 
of Pekeris et al. The latter for rigid spheres falls away 
from experiment in the Knudsen range. The 11-moment 
model seems to give the best fit with experiment in this 
region. As might be expected, the Navier-Stokes speed 
ratio becomes poor when out of the continuum range. 

The attenuation-rate curves, Figs. 8 and 10, offer the 
widest separation in theoretical prediction. With the 
exception of the Navier-Stokes curve (which diverges 
from experiment even in the continuum range), all 
curves show good agreement with experiment in the 
continuum as well as part of the transition range. After 
this, only the kinetic models are in agreement with ex- 
periment. Again, the rigid-sphere description is in better 
agreement and, in fact, the 8-moment rigid sphere is 
certainly in exceptional agreement with experiment. As 
in the case with the speed ratio, the l 1-moment is at its 
worst in the transition region, but even here it is less 
than 10% off the mean experimental values. 

IV. REMARKS AND CONCLUSIONS 

1. In addition to employing argon, Meyer and Sessler • 
also used H•., a gas with internal degrees of freedom, and 
air, a complicated mixture of gases. Naturally, the re- 

sults found for each of these gases differed from each 
other. However, in the Knudsen region, strong agree- 
ment between all the experimental results, and hence 
with the present model equations, is found. This indi- 
cates that at relatively high frequencies the internal 
degrees of freedom do not have an opportunity to be 
excited (the associated time scale i• always larger than 
the time between collisions) and therefore under such 
conditions these more complicated gases behaved as a 
simple gas. This suggests that for any gas one should use 
the appropriate continuum theory such as Navier- 
Stokes, Burnett, super-Burnett, etc., to give low-fre- 
quency data and then match this to the simple gas 
theory at high frequencies. 

2. The results of the kinetic models extend well past 
the existing experimental values, and indeed sufficient 
calculations have been obtained to extend the results 

past those that have been plotted. It seems unlikely, 
however, that experiments can be performed for such a 
high Knudsen-number range. The basic difficulty is that 
a disturbance or oscillation issuing from the wall does 
not resolve itself into a sound wave until the signal has 
moved a distance comparable to the mean free path. At 
distances of less than the mean free path, one has 
essentially free flow and, hence, in this region one would 
essentially be measuring the wall distribution function 
itself. Naturally, since the e-folding distance is small as 
compared with the mean free path for large Kn, a signal 
becomes difficult to detect at distances of the order of 

the mean free path. 
3. The fact that rigid spheres gives a finer description 

than Maxwell molecules probably indicates that a 
fairly hard intermolecular-force law should be used in 
the description of the noble gases. This is also borne out 
by the accepted viscosity-temperature relation for 
helium • u• T -647. (The Maxwell potential leads to u• T 
and rigid spheres to u• T•.) 

4. The question arises as to why a kinetic model with 
relatively few distinguished moments is so much better 
than the results obtained by the 483-moment truncation 
of Pekeris and his coworkers (see parenthetical remark 
in Sec. III). First, we remark that clearly such trunca- 
tions are at most finite Taylor expansions of the exact 
dispersion relation. Next, Wang Chang and Uhlenbeck a 
(see also Ref. 17) showed that, for Maxwell molecules, 
successive coefficients in the expansion 

s = aco+ #cos+ i•co • +--- (3 7) 

for sound waves are given exactly by successive trun- 
cations. A study of the consecutively larger truncations 
used by Pekeris et al. •.7 shows that for Kn<<l closer 
agreement with experiment is obtained. This implies 
that the series (37) is not just asymptotic but actually 
convergent. On the other hand, the wide divergence of 
the consecutive truncations with experiment for Kn> 1 

2x W. H. Keesom, Helium (Elsevier Press, Inc., Amsterdam, 
1942). 
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seems to imply that if the series is convergent it also 
only has a finite radius of convergence (since a finite 
Taylor expansion of the dispersion relation does not 
contain the finite radius of convergence). Simple ex- 
amples illustrating just this point are easily produced. 
If the state of affairs is as we concluded, then no trun- 
cated system, no matter how large, can hope to give re- 
sults in the Knudsen (also probably the transition) 
region. It would therefore seem that this method fur- 
nishes extremely precise results in the continuum (and 
part of the transition) region. Since the intermolecular- 
force law is at best an approximation, the import of 
precise results becomes questionable. 

5. In Sec. II, we were careful to refer to solutions of 
the dispersion as giving "possible" plane-wave solutions. 
Also, we used the Laplace transform rather than the 
customary normal-mode approach to such problems. 
This has been done advisedly. One may show that for 
each kinetic model no plane sound wave exists after 
some frequency. This critical frequency, however, de- 
pends on the particular kinetic models. By increasing N 
in Eq. (14), the critical frequency is also increased. It 
therefore depends on the model and, hence, is not 
physical. As a consequence of using the Laplace trans- 
form, the locus of plane-sound-wave modes possesses an 
analytic continuation. The locus of sound-wave modes 
for large N is in close agreement with the analytic 
continuation for lower-N models. This suggests the use 
of the analytic continuation in predicting sound propa- 
gation when past the critical frequency of some par- 
ticular model. We have done this in presenting the data. 
The critical values are given in Table I. 

A fuller description of this point has been given 
elsewhere? 

6. In a recent report, Kahn and Mintzer 2•' have also 

32 D. Kahn and D. Mintzer (to be published). 

Maxwell Rigid spheres 
N (p/&•) 

TABLE I. Critical fre- 3 0.701 0.701 
quencies. 5 0.547 0.529 

8 0.488 0.415 
11 0.413 0.290 

considered the sound-propagation problem. In brief, 
they make a finite polynomial expansion about the free- 
flow solution. This expansion is substituted into the 
Boltzmann equation and the corresponding moments 
are taken. This novel approach has produced some 
interesting results. As might be expected, their results 
for r<<l are in agreement with the results obtained in 
the present work. Somewhat surprisingly, however, 
their results also agree with the continuum results r>>l. 
(Some explanation of this is found when one notes that 
their method is the unsteady analog of the Lee's •'3 two- 
stream theory--where the same circumstances occur.) 
In the midregion 0.1<r<10, however, the results of 
Kahn and Mintzer are no longer in close agreement with 
experiment and the work given here. 
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